基于背景残差数据的高光谱图像异常检测算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

高等学校博士学科点基金(20060217021)和黑龙江省自然科学基金重点项目(ZJG0606-01)


HYPERSPECTRAL ANOMALY DETECTION ALGORITHM BASED ON BACKGROUND RESIDUAL ERROR DATA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高光谱图像微小目标检测中严重的背景干扰问题,提出了一种基于背景残差数据的非线性异常检测算法。首先利用提取的背景光谱端元对图像各像元进行光谱解混,实现了目标信息和复杂背景信息的分离;接着将含有丰富目标信息的解混残差数据非线性映射到高维特征空间,可以充分挖掘高光谱图像波段间隐含的非线性信息,并在特征空间利用RX算子完成目标的检测,从而在抑制大概率背景信息的基础上有效地利用了高光谱图像波段间的非线性统计特性。为了验证算法的有效性,利用真实的AVIRIS数据进行了实验研究,并与经典RX算法、未抑制背景的特征空间核RX算法的检测结果相比较,结果表明基于背景残差数据的检测算法具有良好的检测性能和较低的虚警,而且运算复杂度较低。

    Abstract:

    In order to overcome the serious background interferences for small target detection of hyperspectral imagery, a nonlinear anomaly detection algorithm based on the background residual error data was proposed. After the background endmembers were extracted, spectral unmixing technique was applied to all mixed spectral pixels to separate target information from complicated background clutter.Then, the unmixing residual error data that included abundant target information was mapped into a high-dimensional feature space by a nonlinear mapping function. Nonlinear information between the spectral bands of hyperspectral imagery was exploited and the anomaly targets could be detected by using RX operator in the feature space. Thus, the ninlinear statistical characteristics between the hyperspectral bands were used effectively on the basis of suppressing the large probability background information. Numerical experiments were conducted on real AVIRIS data to validate the effectiveness of the proposed algorithm. The detection results were compared with those detected by the classical RX algorithm and KRS which did not suppress the backguound information. The results show that the proposed algorithm has better detection performance, lower false alarm probability and lower computational complexity than other detection algorithms.

    参考文献
    相似文献
    引证文献
引用本文

李杰,赵春晖,梅锋.基于背景残差数据的高光谱图像异常检测算法[J].红外与毫米波学报,2010,29(2):150~151]. LI Jie, ZHAO Chun-Hui, MEI Feng. HYPERSPECTRAL ANOMALY DETECTION ALGORITHM BASED ON BACKGROUND RESIDUAL ERROR DATA[J]. J. Infrared Millim. Waves,2010,29(2):150~151.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-01-14
  • 最后修改日期:2009-02-25
  • 录用日期:2009-03-25
  • 在线发布日期: 2010-05-19
  • 出版日期:
文章二维码