用于SAR图像分割的第二代Bandelet域HMT-3S模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60971128、60672126、60673097、60702062);“863计划”项目(2007AA12Z136)和科技部“973计划”重点项目(2006CB705707)资助项目


Second Generation Bandelet-Domain Hidden Markov Tree-3S Model For SAR Image Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的基于变换域隐马尔可夫树(Hidden Markov Tree, HMT)模型的SAR图像分割方法不能得到较满意的区域一致性结果和较准确的分割边缘的问题,提出了一种基于第二代Bandelet域HMT-3S模型的SAR图像分割方法(BHMT-3Sseg)。HMT-3S模型是一种融合了子带间相关性的HMT模型,在描述图像纹理特征时,更具合理性。BHMT-3Sseg方法采用HMT-3S模型对图像的第二代Bandelet系数建模,通过HMT-3S模型参数的训练、各尺度似然值的计算和基于邻域背景的多尺度融合,实现对SAR图像的分割,既能得到较为准确和连续的边缘,也增强了分割结果的区域一致性。实验表明,本文方法BHMT-3Sseg对SAR图像分割是可行有效的。

    Abstract:

    Since the segmentation results of SAR images by traditional transform domain hidden Markov Tree (HMT) Model were unsatisfactory in homogenous regions and exact edges, a new segmentation method based on second generation bandelet-domain HMT-3S model was proposed . The method was called BHMT-3Sseg shortly. HMT-3S is a special kind of HMT which combines the correlation of different subbands. It is more reasonable to characterize texture regions than HMT model. BHMT-3Sseg models the second generation Bandelet coefficients of an image by using HMT-3S, and the SAR image segmentation results were obtained by training the parameters of HMT-3S and computing the likelihood of each scale and multiscale fusion based on a context model. The segmentation results by BHMT-3Sseg not only have more exact and more continuous edges, but also retain better region information. The experiments show that BHMT-3Sseg is efficient and effective for SAR image segmentation.

    参考文献
    相似文献
    引证文献
引用本文

侯彪,翟艳霞,焦李成.用于SAR图像分割的第二代Bandelet域HMT-3S模型[J].红外与毫米波学报,2010,29(2):145~149]. HOU Biao, ZHAI Yan-Xia, JIAO Li-Cheng. Second Generation Bandelet-Domain Hidden Markov Tree-3S Model For SAR Image Segmentation[J]. J. Infrared Millim. Waves,2010,29(2):145~149.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-01-15
  • 最后修改日期:2009-09-14
  • 录用日期:2009-03-25
  • 在线发布日期: 2010-04-07
  • 出版日期:
文章二维码