晶体锗掺硼的离子注入工艺与晶格损伤机理研究
作者:
作者单位:

1.中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083;2.中国科学院大学,北京 100049;3.国科大杭州高等研究院物理与光电工程学院,杭州 310024;4.之江实验室,杭州 311100;5.上海科技大学 物质科学与技术学院,上海 201210

作者简介:

通讯作者:

中图分类号:

TN3

基金项目:


Ion implantation process and lattice damage mechanism of boron doped crystalline germanium
Author:
Affiliation:

1.State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;4.Zhejiang Laboratory, Hangzhou 311100, China;5.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

Fund Project:

Supported by National Key R&D Program of China(2023YFA1608701), National Natural Science Foundation of China(62274168, 11933006, U2141240), and Hangzhou Leading Innovation and Entrepreneurship Team (TD2020002)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    阻挡杂质带结构红外探测器的响应波长可达200 μm,是最重要的甚长波长红外天文探测器。离子注入方法简化了器件的制造过程,但容易造成晶格损伤,引入晶体缺陷,并导致探测器暗电流增加。文章对锗掺硼离子注入工艺进行了研究,并对晶格损伤机制进行了讨论。实验条件包括使用80 keV能量进行硼离子注入,剂量范围为。注入后,在450 °C下进行热退火,以优化掺杂剂活化并减轻离子注入的影响。使用各种表征技术,包括X射线衍射(XRD)、拉曼光谱、X射线光电子能谱(XPS)和二次离子质谱(SIMS)来阐明晶格损伤。在较低剂量下,未观察到明显的结构变化。然而,随着剂量的增加,特定的微观形变变得明显,这可能是由于点缺陷和残余应变造成的。热处理可以恢复产生的晶格损伤,但在高剂量下,注入引起的不可逆应变仍然存在。

    Abstract:

    The response wavelength of the blocked-impurity-band (BIB) structured infrared detector can reach 200 μm, which is the most important very long wavelength infrared astronomical detector. The ion implantation method greatly simplifies the fabrication process of the device, but it is easy to cause lattice damage, introduce crystalline defects, and lead to the increase of the dark current of detectors. Herein, the boron-doped germanium ion implantation process was studied, and the involved lattice damage mechanism was discussed. Experimental conditions involved using 80 keV energy for boron ion implantation, with doses ranging from 11013 to 31015 cm-2. After implantation, thermal annealing at 450 °C was implemented to optimize dopant activation and mitigate the effects of ion implantation. Various sophisticated characterization techniques, including X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS) were used to clarify lattice damage. At lower doses, no notable structural alterations were observed. However, as the dosage increased, specific micro distortions became apparent, which could be attributed to point defects and residual strain. The created lattice damage was recovered by thermal treatment, however, an irreversible strain induced by implantation still existed at the high doses.

    参考文献
    相似文献
    引证文献
引用本文

HABIBA Um E,陈天业,刘赤县,窦伟,刘晓燕,凌静威,潘昌翊,王鹏,邓惠勇,沈宏,戴宁.晶体锗掺硼的离子注入工艺与晶格损伤机理研究[J].红外与毫米波学报,2024,43(6):749~754]. HABIBA Um E, CHEN Tian-Ye, LIU Chi-Xian, DOU Wei, LIU Xiao-Yan, LING Jing-Wei, PAN Chang-Yi, WANG Peng, DENG Hui-Yong, SHEN Hong, DAI Ning. Ion implantation process and lattice damage mechanism of boron doped crystalline germanium[J]. J. Infrared Millim. Waves,2024,43(6):749~754.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-01
  • 最后修改日期:2024-11-06
  • 录用日期:2024-03-12
  • 在线发布日期: 2024-11-06
  • 出版日期: 2024-12-25
文章二维码