用于入侵的自适应遗传算法训练人工神经网络
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


TRAINING ARTIFICIAL NEURAL NETWORK BY INVADING ADAPTIVE GENETIC ALGORITHM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    给出了一种能和网络结构一一对应的,合适的染色体编码方法。用物种入侵的遗传算法训练人工神经网络,在入侵过程中,遗传算法自适应的调整交叉算子和变异算子。提出了一种根据平均适应度值确定入侵物种规模的方法,并详细描述了算法步骤,最后通过实验证明了本文算法的有效性和优越性。

    Abstract:

    A suitable chromosome encoding method, which could correspond with the network one by ,was proposed. The species invasion genetic algorithm was used to train artificial neural networks. In the invading process, the genetic algorithm adjusts adaptive crossing operation and mutation operation. A method based on the average fitness values was proposed to determine the scale of invasion species,and a detailed description of the algorithm steps was given, Finally, the validity and superiority of the algorithm are proved by the experimental results.

    参考文献
    相似文献
    引证文献
引用本文

王改良,武妍.用于入侵的自适应遗传算法训练人工神经网络[J].红外与毫米波学报,2010,29(2):136~139]. WANG Gai-Liang, WU Yan. TRAINING ARTIFICIAL NEURAL NETWORK BY INVADING ADAPTIVE GENETIC ALGORITHM[J]. J. Infrared Millim. Waves,2010,29(2):136~139.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-03-26
  • 最后修改日期:2009-09-28
  • 录用日期:2009-05-12
  • 在线发布日期: 2010-05-19
  • 出版日期:
文章二维码