红外研究 Chin. J. Infrared Res.

黑体辐射中普朗克积分的新展式

徐新闻* 王新德** 糜正瑜** 钟万蘅* 戴显熹* (中国科学院上海技术物理研究所红外物理开放研究实验室)

摘要—— 讨论普朗克积分(相对波段光子出射度 $R_n(x)$ 和相对 波段 辐射 出射度 $R_m(x)$)在 $x \equiv h\nu/kT \leq 10$ 情况下的幂级数展开式。利用解析开拓 方法避开 $x = 2\pi ni$ 处被积函数的奇性,给出高阶系数的解析展式,导出了 $R_n(x)$ 和 $R_m(x)$ 的若干幂级数展式,在 $|x-x_0| \leq 1$ 时精度为 $10^{-9} \sim 10^{-10}$; 在 $|x-x_0| \leq 0.5$ 时精度为 10^{-13} 。

一、引 官

各种类型的普朗克积分,例如辐射出射度 Mo, 和光子出射度 No, 可表示为^{[11}

$$N_{0,\lambda} = K_N(\lambda T) N_{0,\infty} = \alpha T^3 R_n(x), \qquad (1.1)$$

$$M_{0,\lambda} = K_{\mathcal{M}}(\lambda T) M_{0,\infty} = \sigma T^4 R_m(x), \qquad (1.2)$$

其中

$$\boldsymbol{x} = \frac{h\nu}{kT} = \frac{ch}{\lambda kT}, \ \boldsymbol{\alpha} = \frac{4\pi}{c^2} \frac{k^3}{h^3} \zeta(3), \ \boldsymbol{\sigma} = \frac{2k^4\pi^5}{15h^3c^2}, \tag{1.3}$$

ν, λ, c, T, k, σ 分别为光的频率、波长、 光速、温度、玻尔兹曼常数和斯忒藩-玻尔 兹曼常数。我们已经获得 $x \ge 2$ 的和 $x \le 2$ 的 $R_n(x)$ 和 $R_m(x)$ 的各种展式^[1]。数值计 算表明,幂级数表示在一般程序中远比指 数表示省时间。为了提高计算速度,希望 在较大的 x 值时,仍运用幂级数表示。虽 然 $R_n(x)$, $R_m(x)$ 的 Bernoulli数展开式的 收敛半径可达 2π , 但 x > 2 时收敛慢。此 外, $|x| > 2\pi$ 时,下列公式不再适用;

$$\frac{x}{e^{x}-1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!}, \qquad (1.4)$$

因为 $x=2\pi ni$ 为母函数的奇点。但是,我们可以通过解析开拓的办法,绕过这些奇点。

* 复旦大学物理系

** 中国科学院上海技术物理研究所

ъŇ

• 7 •

二、 $R_n(x)$ 和 $R_m(x)$ 的幂级数系数的递推式

R_n(x), R_m(x)的这种解析开拓不但具有应用背景,而且在数学上也是自然的,方便的。因为它们的各阶微商全部均是初等函数:

$$\frac{d}{dx}R_m(x) = -\frac{15}{\pi^4} x^3 b(x), \qquad (2.1)$$

$$\frac{d}{dx}R_n(x) = -\frac{x^2}{2\zeta(3)}b(x), \qquad (2.2)$$

其中

$$b(x) = (e^x - 1)^{-1}, (2.3)$$

则

$$R_{m}(x) = R_{m}(x_{0}) - \frac{15}{\pi^{4}} x_{0}^{3} b(x_{0}) (x - x_{0}) + \sum_{l=2}^{\infty} R_{ln}^{(l)}(x_{0}) \frac{(x - x_{0})^{l}}{l!}, \qquad (2.4)$$

$$R_{n}(x) = R_{n}(x_{0}) - \frac{x_{0}^{2}b(x_{0})}{2\zeta(3)}(x - x_{0}) + \sum_{l=2}^{\infty} R_{n}^{(l)}(x_{0}) \frac{(x - x_{0})^{l}}{l!}$$
(2.5)

再利用 Lebnitz 公式,得:

$$R_{m}^{(n)}(x) = -\frac{15}{\pi^{4}} \left[x^{3} b^{(n-1)}(x) + 3x^{2}(n-1) b^{(n-2)}(x) + 3(n-1)(n-2)x b^{(n-3)}(x) + (n-1)(n-2)(n-3) b^{(n-4)}(x) \right], \qquad (2.6)$$

$$R_{n}^{(n)}(x) = -\frac{1}{\zeta(3)} \left[x^{2} b^{(n-1)}(x) + 2(n-1)x b^{(n-2)}(x) + (n-1)(n-2)b^{(n-3)}(x) \right]_{o}$$
(2.7)

三、**b**⁽ⁿ⁾(x)的递推式

为保证 $R_m(x)$, $R_n(x)$ 的幂级数精度为 $10^{-8} \sim 10^{-10}$, $|\Delta x| \leq 1$, 一般要用到 b(x)的直到 12 阶的微商,这不是轻而易举的事;为此,我们设计了两种方案。

方案 I. b(x)的高阶微商用低阶微商递推表示,详细的计算结果为:

$$b'(x) = -b(b+1),$$

$$b''(x) = -b'[1+2b],$$

$$b'''(x) = -2b'^{2} - (1+2b)b'',$$

$$b^{(4)}(x) = -6b'b'' - (1+2b)b''',$$

$$b^{(5)}(x) = -6(b'')^{2} - 8b'b''' - (1+2b)b^{(4)},$$

$$b^{(6)}(x) = -20b''b''' - 10b'b^{(4)} - (1+2b)b^{(5)},$$

$$b^{(6)}(x) = -20(b''')^{2} - 30b''b^{(4)} - 12b'b^{(5)} - (1+2b)b^{(6)},$$

$$b^{(7)}(x) = -20(b''')^{2} - 30b''b^{(4)} - 12b'b^{(5)} - (1+2b)b^{(6)},$$

$$b^{(8)}(x) = -70b'''b^{(4)} - 42b''b^{(5)} - 14b'b^{(6)} - (1+2b)b^{(7)},$$

$$b^{(9)}(x) = -70[b^{(4)}]^{2} - 112b'''b^{(5)} - 56b''b^{(6)} - 16b'b^{(7)} - (1+2b)b^{(8)},$$

$$b^{(10)}(x) = -252b^{(4)}b^{(5)} - 168b'''b^{(6)} - 240b'''b^{(7)} - 90b''b^{(8)} - 20b'b^{(9)} - (1+2b)b^{(10)},$$

$$b^{(12)}(x) = -924b^{(5)}b^{(6)} - 660b^{(4)}b^{(7)} - 330b'''b^{(8)} - 110b''b^{(9)} - 22b'b^{(10)} - (1+2b)b^{(11)},$$

• 8 •

方案II. 将 b⁽ⁿ⁾(x)展开为 b(x)的多项式

例如:

$$b'(x) = -b - b^2,$$

 $b''(x) = b + 3b^2 + 2b^3,$ (3.2)

一般地,令

$$b^{(k)}(x) = \sum_{\nu=1}^{k+1} \alpha_k(\nu) b^{\nu}(x), \qquad (3.3)$$

可证明,系数存在下列递推关系:

$$\begin{cases} \alpha_{k+1}(1) = -\alpha_{k}(1) = (-1)^{k+1}, \\ \alpha_{k+1}(k+2) = -(k+1)\alpha_{k}(k+1), \\ \alpha_{k+1}(\nu) = -[\nu\alpha_{k}(\nu) + (\nu-1)\alpha_{k}(\nu-1)], \ (\nu=2,\ \cdots,\ k), \end{cases}$$
(3.4)

由此,可以导出 b(x)的前 12 阶导数的以 b(x)多项式表示的表式,其系数列于表1中。

四、 $R_m(x)$ 和 $R_n(x)$ 的幂级数展式

1. 关于 x₀ 的选取

我们准备在 $x \leq 10$ 的范围内运用幂级数展式。在 $0 \leq x \leq 2$ 区域内, 文献 [1] 中已经给出了 $R_m(x)$, $R_n(x)$ 的幂级数展式。在 $x \geq 10$ 的区域内, 我们可以运用下列指数展式:

$$R_n(x) = \frac{1}{2\zeta(3)} \left\{ -x^2 \ln(1 - e^{-x}) + 2\sum_{n=1}^{\infty} e^{-nx} \left[\frac{1}{n^3} + \frac{x}{n^2} \right] \right\}, \qquad (4.1)$$

$$R_{m}(x) = \frac{15}{n^{4}} \left\{ -x^{3} \ln\left(1 - e^{-x}\right) + 3\sum_{n=1}^{\infty} e^{-nx} \left[\frac{2}{n^{4}} + \frac{2x}{n^{3}} + \frac{x^{2}}{n^{2}}\right] \right\}_{0}$$
(4.2)

因为 x≥10 时,上列公式收敛很快,只要取 n=2 即可准确到 10⁻⁸ 以上。

在 $2 \le x \le 10$ 范围内,要视 Taylor 展式的 $|x-x_0|$ 的宽度。如果取 $|x-x_0| \le 1$,则需取 $x_0=3, 5, 7, 9_0$ (4.3)

如果要求 | x-x₀ | ≤0.5.则取

 $x_0 = 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5_{\circ}$ (4.4) 对这少数几个点的 $R_n(x_0), R_m(x_0)$ 的值,可以运用式(4.1)(4.2)算出,准确到 10⁻¹³ 以上。

2. 系数的计算方案

方案 II 将 b^(k)(x)用 b 的多项式表示,一般包含的系数较大, b⁽¹²⁾(x)的多项式系数可高达 11 位数字,又因 b^(k)(x)在 x 较大时一般很小,大都是 b(x)的量级,因此式(3.3)就很难算得准确。方案 I 就不同了, b⁽¹²⁾(n)的混合表示系数不超过 924。再加上各低阶微商本来是应该算的,因此在计算机计算中反而显得方便,而且实用、准确。故我们将运用式(3.1)计算下列系数;

$$B_{n}(K, x_{0}) \equiv R_{n}^{(k)}(x_{0})/k!, B_{n}(0, x_{0}) \equiv R_{n}(x_{0});$$

$$B_{m}(K, x_{0}) \equiv R_{m}^{(k)}(x_{0})/k!, B_{m}(0, x_{0}) \equiv R_{m}(x_{0});$$
(4.5)

为保证 $R_n(x)$ 和 $R_n(x)$ 的展式的精度在 $10^{-9} \sim 10^{-19}$ 范围内, 我们计算了 $x_0 = 3$, 5, 7, 9的 $B_n(x_0)$, $B_n(x_0)$ 及它们的前 12 阶微商值, 准确到 12 位有效数字, 列于表 2 中, 则有:

$$R_n(x) = \sum_{k=0}^{12} B_n(K, x_0) (x - x_0)^k; \qquad (4.6)$$

$$R_m(x) = \sum_{k=0}^{12} B_m(K, x_0) (x - x_0)^k; \qquad (4.7)$$

• 9 •

Table 1	Coefficients a	$a_k(\nu)$ expressed h	y $A(K, v)$ corres	ponding to K=1~	-12
A(1, 1)	-1		A(9, 2)	-511	
A(1, 2)	-1		A(9, 3)	-18660	
A(2, 1)	1	~	A(9, 4)	-204630	
A (2, 2)	3		A(9,5)	-1020600	
A(2, 3)	2		A(9, 6)	-2739240	
A(3, 1)	-1	ļ	A(9,7)	-4233600	
A (3, 2)	-7	10 m	A(9, 8)	3780000	
A (3, 3)	-12		A(9, 9)	1814400	
A(3, 4)	-6	1	A(9, 10)	- 362880	
A(4, 1)	1		A(10, 1)	^{#1} 1	
A(4, 2)	15		A(10, 2)	1023	
A(4, 3)	50		A(10, 3)	57002	
A(4, 4)	60	-	A(10, 4)	874500	
A (4, 5)	24	1	A(10, 5)	5921520	
A(5, 1)	-1		A(10, 6)	215 3 8440	
A(5, 2)	31		A(10, 7)	46070640	
A(5, 3)	-180		A(10, 8)	59875200	
A(5, 4)	- 390		A(10, 9)	46569600	
A(5, 5)	- 360		A(10, 10)	19958400	
A (5, 6)	-120		A(10, 11)	3628800	
A(6, 1)	1		A(11, 1)	-1	
A (6, 2)	63		A(11, 2)	2047	
A(6, 3)	602		A(11, 3)	-173052	
A(6, 4)	2100		A(11, 4)	- 3669006	
A(6, 5)	3360		A(11, 5)	-33105600	
A(6, 6)	2520		A(11, 6)	-158838240	
A(6, 7)	720		A(11, 7)	-451725120	
A(7, 1)	-1		· A(11, 8)	-801496080	
A(7, 2)	-127		A(11, 9)	-898128000	×
A(7, 3)	-1932		A(11, 10)	-618710400	φ. φ
A(7, 4)	-10206		A(11, 11)	-239500800	
A(7, 5)	25200		A (11, 12)	-39916800	
A(7, 6)	-31920		A(12, 1)	1	
A (7, 7)	-20160	å.	A (12, 2)	4095	
A(7, 8)	- 5040	<u>.</u>	A(12, 3)	523250	
$\Delta(8, 1)$	1	10.1	A(12, 4)	15195180	
A (8, 9)	255		A(12, 5)	180204024	
$\underline{A}(0, 2)$	6050		A(12, 6)	1118557440	
$\mathbf{A}(8,5)$	46620		A(12, 7)	4115105280	
A(8, 4)	166994		A(12, 8)	9574 04 4480	
A(8, 5)	100624		$\Delta(12, 0)$	14495120640	
A(8, 6)	317520		A(12, 3)	14270256000	
A(8,7)	332640			2201610000	
A (8, 8)	181440		$\mathbf{A}(12, 11)$	0041014000	
A(8, 9)	40320		A(12, 12)	3113510400	
A(9, 1)	-1		A (12, 13)	479001600	

表1 b(x)前12阶导数的多项式系数 α_x(ν)(用 A(K, ν)表示)

4... ¥#

表 2 R_m(x)、R_n(x)的幂级数展式前 13 项系数(x₀=8、5、7、9)

Table 2 Coefficients $B_m(K, x_0)$ and $B_n(K, x_0)$ corresponding to $x_0=3, 5, 7, 9$ and $K=0\sim 12$.

			• • • • • •	• • • • •	
	x_0	K	$B_{m}(K, x_{0})$	$B_n(K, x_0)$	
18-19-19 1	3.0	0	.6069845597266D+00	.3586980704978D+00	
	3.0	1	2178467826124D+00	1961476479116D+00	
	3.0	2	.5707116951679D-02	.3782992096566D-01	
	3.0	3	.1000087447170 D-01	.5980650408366D-03	
	8.0	4	1859751755387D-02	1824023122987D 02	
	9.0	5	8160859841161D-04	.4129263816877D-03	
	3.0	6	.8189498501414D-04	4096412784889D-04	
	3.0	7	1355739125653D-04	5029392870222D-06	
	3.0	8	.5960740990020 D - 06	.6833913794535D-06	
5	3 .0	9	.1460157934591D - 06	7101478340259D-07	33
077 4	3.0	10	- .2721296555972D-07	- .3197919906058D-08	
	3.0	11	.66667 36 015143D-09	.1569334667378D - 08	
	3.0	12	.3945560336675 D - 09	1242635625104D - 09	
	xo	K	$B_m(K, x_0)$	$B_n(K, x_0)$	
	5.0	0	.2454669107907D+00	.1039881362044D+00	
	5.0	1	1305766516688D+00	7054215661997D-01	
	5.0	2	.2655822380563D-01	.2140191380942 D - 01	
	5.0	3	1138250051897 D - 02	3468511715153D~02	
	5.0	4	6086694416103D-03	.1914518522756D-03	
	5.0	5	.1469914999915D- 03	.4 877774579650D-04	
	5.0	6	1233983582943 D-04	1479604299388D-04	
	5.0	7	-.9578041408206D $-$ 06	.2019024612231D-05	
	5.0	8	.4112207775131D-06	1311732009607 D - 06	
	5.0	9	5 4771782 79 816D-07	6269987132842D - 08	
5	5.0	10	.2748816290767D-08	.2613606122 843D-08	T
5	5.0	11	.333012970482 3D-09	2952956491354D-09	
	5.0	12	- .8527534731368D-10	.80 68756692167D-11	
	xo	K	$B_m(K, x_0)$	$B_n(K, x_0)$	
	7.0	0	.7557360958472D-01	.2466431993408D-01	
	7.0	1	4820817834330D-01	1860269604971D-01	
	7.0	2	.1379576538669D-01	.6652309490670D-02	
	7.0	3	2147381920816D - 02	1462190552368D-02	
	7.0	4	.1352874424679D-03	.2088683402857D-03	
	7.0	5	.1801817980512D-04	1691776582083D-04	
	7.0	· 6	5819826925801D-05	2317500661913D-06	
	7.0	7	.7336695879421D-06	.3114878697498D-06	3
	7.0	8	3893187643941D-07	5395911649278D-07	
	7.0	9	3489465943617D-08	.5505427193025D-08	
	7.0	10	.1053537165339D-08	3012990036920D-09	
	7.0	11	1265697729006D-09	9711329288035D-11	
	7.0	12	.8152701351099D-11	.4417707092272D-11	
	x ₀	K	$B_m(K, x_0)$	$B_n(K, x_{\bullet})$	
	9.0	0	.1961297996512D-01	.518489573631●D - 02	
	9.0	1	1385551136701D-01	4158466993269D-02	
	9.0	2	.4619358847497D-02	.1 617438237963D - 02	
	9.0	3	9414714432420D-03	4023749044164D - 03	
	9.0	4	.1238411666762D-03	$.7069980192325 \mathrm{D} - 04$	
	9.0	5	9127288539986D-05	9023808093658D-05	
	9.0	6	132373824757 4 D0 6	.7958083122756D-06	
	9.0	7	.1414558259180D-06	3333600454707D-07	
	9.0	8	2160852229869D - 07	3244384642043 D - 08	
	9.0	9	.1887301386149D-08	.8868705005953D - 09	
		-			
	9.0	10	7459683193650D-10	1110758638098D-09	
	9.0 9.0	10 11	7459683193650D - 10 6249686594012D - 11	1110758638098D-09 .9344060207613D-11	52

由表 2,式(4.6)、(4.7)并改进文献[1]中的(5.21),(3.17),即可获得 $x \leq 10$ 情况下的 $|\Delta x| < 1$ 的展式,精度保证在 10^{-9} 以上。当 x > 10 时,可运用式(4.1)、(4.2),只须取 n=2即可。从而整个区域上的普朗克积分数值就可以方便地算出。

五、ζ(3)的精密计算及公式的校验

这些展式的另一类重要的工作,是误差的确定和仔细的检验。估计这些展式的精度是个相当复杂的问题,但这对于实际应用都是十分重要的。我们在文献[1]中已给了 $x \leq 2$ 时的 $R_m(x)$, $R_n(x)$ 展式的误差估计,以及 $x \geq 2$ 的 $R_m(x)$, $R_n(x)$ 的指数展式的误差估计。为了 实现 $2 \leq x \leq 10$ 情况下 $R_m(x)$, $R_n(x)$ 的幂级数的误差估计,利用了 Lagrange 型余项:

$$|\mathcal{A}_{n}| = \frac{1}{(n+1)!} |f^{(n+1)}(\xi) (x - x_{0})^{n+1}| \leq \frac{1}{(n+1)!} |f^{(n+1)}(\xi)|_{\circ}$$

$$(x_{0} - 1 < \xi < x_{0} + 1)$$

$$(5.1)$$

因为我们取间隔 | x-xo | <1, 由我们所得之系数看出, 展式误差将比 10⁻¹⁰ 小。

为了实现实际比对,我们选取误差最大的点(取 $a - x_0 = \pm 1$)的幂级数结果与精密算出的指数展式结果作比较。实现这个精密比对的关键之一,是获得 $\zeta(3)$ 的 12 至 14 位有效数 字。不然,两类公式很难获得一致的结果。同时, $\zeta(3)$ 作为黑体辐射中出现的基本数字,细致地计算一下也是必要的。文献[2]对 $\zeta(3)$ 运用了下列近似:

$$\zeta(3) \simeq \zeta(3, 100051) \equiv \sum_{n=1}^{100051} \frac{1}{n^3} = 1.20205690, \qquad (5.2)$$

由于没有明确的误差估计,使用时没有保证。我们在实际计算中也发现这个值妨碍了两类 展式的严密比对。我们可靠地估计了这个值的误差,发现它是 0.5×10⁻⁸,从而解释了两类 展式计算结果的分歧的原因。

为了使这个数值计算精确化,我们求出了10100项的和。后来发现计算机计算中的误差积累也是可观的。对这类数值的精密计算,宜采用手续简单而精密的方法。为此,我们运用下列数学定理:

[定理]对一切递降正项级数:

$$\Sigma = \sum_{n=1}^{\infty} u(n), \ \Sigma(N) = \sum_{n=1}^{N} u(n),$$
 (5.3)

存在下列近似值表示:

$$\Sigma \simeq \Sigma(N) + \int_{N}^{\infty} u(n) dn - \frac{1}{2} u(N), \qquad (5.4)$$

误差为

$$|\Delta_N| < \frac{1}{2} u(N) \, , \tag{5.5}$$

因此我们有:

$$\boldsymbol{\zeta}(3) \simeq \sum_{n=1}^{N} \frac{1}{n^3} + \frac{1}{2} \frac{1}{N^2} - \frac{1}{2} \frac{1}{N^8}, \qquad (5.6)$$

$$|\Delta_N| < \frac{1}{2} \frac{1}{N^3}$$
 (5.7)

为了避免误差积累过大,我们先计算ζ(3)-1.2020569031591,然后再加上这个常数项。采 用了上面的各个措施后,计算10⁴项,即可精确到5×10⁻¹³。实际计算表明,计算到N=

• 12 •

30000 项时,已准确到 10⁻¹⁴,因此我们得到的 ζ(3) 的数值为:

 $\zeta(3) \doteq 1.2020569031596_{\circ}$ (5.8)

它的精度至少保证在5×10⁻¹³范围内。

运用这个数值,我们成功地实现了两类展式的严密比对。结论是:我们所获得的幂级数 展开式,当 $x_0 \leq 10$, $|x - x_0| < 0.5$ 时,有 5×10^{-12} 的精度。在此精度下,与作了严格可靠的 误差估计的指数展式是一致的。

总之,我们获得了黑体辐射物理量在各种条件下的解析表示,并带有可靠的误差估计, 为科学的程序设计及程序库的建立提供必要的准备。

参考文献

[1] 戴显熹,王新德、徐新闻,红外研究,5(1986),4:247~256.
 [2] 朱焕文等编,黑体辐射数据表,科学出版社,1984.

SOME NEW EXPRESSIONS OF PLANCK INTEGRALS LN BLACKBODY RADIATION

XU XINWENG^{*} WANG XINDE^{**} MI ZHENGYU^{**} ZHONG WANHENG^{*} DAI XIANXI^{*} (Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Academia Sinica)

ABSTRACT

Some expressions of Planck integrals (the relative photon radiant exitance Rn(x)and the relative radiant exitance $R_m(x)$ for $x = h\nu/kT \le 10$) are derived with accuracy of $10^{-9} \sim 10^{-10}$ for $|x - x_0| \le 1$ or 10^{-12} for $|x - x_0| \le 0.5$. By means of analytic continuation, the singularities of integrands at $x = 2\pi ni$ are avoided. Analytic expressions of higher order coefficients are given. The accuracy of the expressions is checked in detail.

 ⁽Department of physics, Fudan University)

^{** (}Shanghai Institute of Technical physics, Academia Sinica)