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Abstract： This study introduces a comprehensive theoretical framework for accurately calculating the electronic 
band-structure of strained long-wavelength InAs/GaSb type-II superlattices.  Utilizing an eight-band k ⋅ p Hamilto⁃
nian in conjunction with a scattering matrix method， the model effectively incorporates quantum confinement， 
strain effects， and interface states.  This robust and numerically stable approach achieves exceptional agreement 
with experimental data， offering a reliable tool for analyzing and engineering the band structure of complex multi⁃
layer systems.
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Introduction
Type-II InAs/GaSb superlattices （T2SLs）， formed by alternating InAs and GaSb layers over multiple peri⁃ods， were first proposed by Sai-Halasz， Tsu， and Esaki in 1977 ［1］.  These structures are characterized by a bro⁃ken-gap alignment where the valence band maximum of GaSb lies above the conduction band minimum of InAs， resulting in the spatial separation of electrons in InAs and holes in GaSb.  The tunable band-structure of T2SLs is one of their most significant advantages， as the energy gap can be engineered by varying the layer thicknesses and interface compositions.  This tunability makes T2SLs a promising candidate for a wide range of applications， including photodetectors ［2， 3］ and lasers ［4］.  In par⁃ticular， their narrow bandgap makes them especially well-suited for the development of long wavelength infra⁃red （LWIR） photodetectors ［3， 5-7］.Traditionally， methods such as the Empirical Tight Binding Method （ETBM） have been used to calculate electronic band structures in these systems ［8］.  Howev⁃er， ETBM heavily relies on material-specific fitting pa⁃rameters， limiting its accuracy for narrow bandgaps rele⁃

vant to LWIR applications.  An alternative approach based on the k∙p model and envelope function approxima⁃
tion offers improved accuracy by incorporating interface effects and strain.In this work， we adopt an eight-band k∙p model to 
construct the bulk states in individual material layers and match the wavefunctions at interfaces using the boundary conditions from Burt’s envelope function theory ［9］.  This approach accounts for the impact of lattice-mis⁃match strain on the electronic band-structure of InAs/GaSb superlattices designed for LWIR photodetectors 
（around the Γ-point）.  To solve the eigenvalue problem， we employ the scattering-matrix method， which provides greater numerical stability than traditional transfer-matrix approaches， particularly for thicker structures and large basis sets （such as LWIR T2SLs）.  This method relies on fewer empirical parameters， incorporates strain and inter⁃face effects， and reduces computational complexity by handling smaller matrices.  At the end， we compare the obtained results from the model with experimental results to confirm the predictions of this method.

Received date： 2024⁃12⁃09，revised date： 2024⁃12⁃24  收稿日期：2024⁃12⁃09，修回日期：2024⁃12⁃24
Biography：Abbas Haddadi received his Ph. D.  in Electrical Engineering and Computer Science from Northwestern University， Evanston， IL， in 2015.  He 
is currently a Display Architect at Apple， Inc. ， a role he has held since May 2022.  Previously， He served as a Senior Research Scientist at KLA （2018–
2022）， where he worked on next-generation high-performance UV/Visible/Infrared image sensors and imaging systems.  Prior to that， he was the Technical 
Director at Nour， LLC （2016–2018）， contributing to the development of innovative infrared camera technologies. His research interests span compound 
semiconductor materials， epitaxial crystal growth， novel optoelectronic devices， high-speed optoelectronics， and advanced imaging systems.
 * Corresponding author：Manijeh Razeghi received the Doctorat d’Etat es Sciences Physiques degree from the Université de Paris， France， in 1980. ，After 
heading the Exploratory Materials Laboratory， Thomson-CSF （now Thales）， France， she joined Northwestern University， Evanston， IL， USA， as a Walter 
P.  Murphy Professor and the Director of the Center for Quantum Devices in 1992.  She is one of the leading scientists in the field of semiconductor science 
and technology， pioneering in the development and implementation of major modern epitaxial techniques， such as MOCVD， VPE， gas MBE， and MOMBE， 
for the growth of entire compositional ranges of III–V compound semiconductors. E-mail： razeghi@northwestern. edu



红 外 与 毫 米 波 学 报 XX 卷

1 Method 
In this work， we consider a structure consisting of InAs/GaSb quantum wells grown along the ［001］ direc⁃tion on a GaSb substrate （z-direction）.  While the study of bulk materials using the k ⋅ p model does not pose sig⁃

nificant challenges， this is not the case for heterostruc⁃tures like superlattices.  The behavior of the envelope function at the interfaces between different semiconduc⁃tors remains uncertain.  However， Burt demonstrated that a Hamiltonian similar to the one proposed by Kane can be effectively applied to the bulk regions of a super⁃lattice， provided the quadratic valence band terms are properly symmetrized ［9］.  This approach was later ex⁃tended to an eight-band Hamiltonian by Foreman ［10］.  This eight-band k ⋅ p model is employed for zinc-blende 
crystals to describe the conduction and valence band structures near the Γ-point， with spin-orbit coupling and strain effects included.  In this model， the contributions of higher bands are neglected， and spin-orbit coupling is treated as a perturbation ［11］.  Using the following basis functions 
| S↑ ， | X↑ ，|Y↑ ，| Z↑ ，| S↓ ，| X↓ ，|Y↓ ， and 
| Z↓  ［10］， the 8 × 8 k ⋅ p Burt’s Hamiltonian can be 
expressed as：

H =  é
ë
êêêê ù

û
úúúúH4 0

0 H4
+ HSO + Hε (1)

where H4  represents the k-dependent 4 × 4 block， HSO accounts for spin-orbit coupling effects， and Hε   incorpo⁃rates the strain-induced modifications in the electronic structure.The H4 block is defined as：
H4 =  é

ë
êêêê ù

û
úúúúHcc Hcv

Hvc Hvv

. (2)
where the conduction band term is 
Hcc = Ec( z ) + kAc( z ) k， with Ac representing contribu⁃
tions from remote bands ［10］.  The parameter Ac is given by：

Ac = ℏ2

2mc
- P2

3Eg
- P2

3( )Eg + Δ  (3)
where mc   is the conduction band effective mass， P is the interband momentum matrix element defined as P =
( ℏ im ) S|px|X ， Eg   is the bandgap， Δ represents the 
spin-orbit splitting energy， and m is the free-electron mass.The coupling between the conduction and valence 
bands is expressed as Hcv = H †

cv = [ iPkx iPky iPkz ]， where 
Kane’s B-parameter is neglected.  The valence band block Hvv is a 3 × 3 matrix that describes the interactions among heavy-hole， light-hole， and split-off states with typical diagonal and off.  Its diagonal components are giv⁃en by：

HXX = Ev - Δ
3 + L'K 2

x + M (k2
y + k2

z ) , (4)
HXY = kx N'+ky + ky N-kx,

where Ev   is the valence band edge.  Other components 

are obtained through cyclic permutations of x， y， and z.The coefficients L'， M， N'+， and N- are derived from the modified Luttinger parameters γ1， γ2， and γ3.  Ex⁃plicitly， these are defined as
L' = - ℏ2

2m (γ1 + 4γ2 ) , (5)
M = - ℏ2

2m (γ1 - 2γ2 ) ,
N' = - ℏ2

2m (6γ3 ) ,
N- = M - ℏ2

2m
,

N'+ = -N' - N-.
The modified Luttinger parameters themselves ac⁃count for remote band interactions and are expressed as

γ1 = γL1 - EP3Eg
, (6)

γ2 = γL2 - EP6Eg
,

γ3 = γL3 - EP3Eg
,

where
EP = 3m/mc2

Eg
+ 1/ (Eg + Δ)

 (7)

and γL1， γL2， and γL3 are original Luttinger parame⁃ters.  These parameters refine the representation of heavy-hole and light-hole masses and include effects from high⁃er-energy bands.Spin-orbit coupling is represented by HSO  ， a matrix term that introduces band splitting due to the interaction between electron spin and crystal field potential.  It is giv⁃en by：

HSO =  - Δ
3
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0 0 i 0 0 0 0 -1
0 -i 0 0 0 0 0 i
0 0 0 0 0 1 -i 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 -i 0
0 0 0 i 0 i 0 0
0 1 -i 0 0 0 0 0

. (8)

Strain-induced effects are incorporated through Hε  ， which modifies the band-structure by accounting for lat⁃tice deformation.  It can be expressed as ［12］：

Hϵ =  é
ë
êêêê ù

û
úúúúHϵ0 0

0 Hϵ0
 (9)

where Hϵ0 is a 4 × 4 block given by：

Hϵ0 =  
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú
acϵ 0 0 0
0 hxx nϵxy nϵxz0 nϵyx hyy nϵyz0 nϵzx nϵzy hzz

. (10)

In this matrix， ϵij  represents the strain tensor compo⁃nents， ϵ = ϵxx + ϵyy + ϵzz ， and ac   is the conduction band 
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deformation potential.  The diagonal terms， hxx， hyy， and 
hzz， are defined as：

hxx = lϵxx + m (ϵyy + ϵzz ) , (11)
hyy = lϵyy + m (ϵxx + ϵzz) ,
hzz = lϵzz + m (ϵxx + ϵyy ) ,

where l， m， and n are parameters expressed in terms of the valence band deformation potentials av， b， and d as ［12］：
l = av + 2b, (12)
m = av - b,
n = 3 d.

The strain tensor components are given by ［13］：

ϵxx = ϵyy = a0 - a
a , (13)

ϵzz = - 2C12
C11

ϵxx,
ϵxy = ϵyx = ϵxz = ϵzx = ϵyz = ϵzy = 0.

Here， a0  and a represent the lattice constants of the substrate and the layer material， respectively， while C11 and C12  are the stiffness constants ［14］.After composing Hamiltonian matrix， one needs to find eigenvalues.  To address the issue of spurious un⁃physical solutions， Ac is set to zero ［10］， simplifying the calculations for the envelope functions ψi  .  The system is 
governed by the eigenvalue equation：

∑
j = 1

9
Hij ψj = Eψi,   i = 1, 2, ⋯, 8 (14)

where E is the energy eigenvalue.  The scattering matrix method ［15］ is used to solve this equation.  This method is particularly effective for determining the subband dis⁃persions and wave functions in multilayer structures with thick layers.  Unlike the transfer-matrix method， which is prone to numerical instability due to the equal treatment of exponentially growing and decaying wave functions， the scattering matrix allows the physically significant ei⁃genstates to dominate.  This prevents the loss of decaying wave functions during computation and avoids the need for truncation schemes， making it especially effective for accurately analyzing complex band structures in multilay⁃er systems.The conduction band envelope functions ψ1 and ψ5 are expressed in terms of valence band envelope func⁃tions as：
ψ1 = i (E - Ec - acϵ) -1

P (kx ψ2 + ky ψ3 + kz ψ4 ), (15)
ψ5 = i (E - Ec - acϵ) -1

P (kx ψ6 + ky ψ7 + kz ψ8 ).
Substituting these expressions into the remaining six equations reduces the system to a 6 × 6 energy-depen⁃dent Hamiltonian H (e) governing the evolution of the vec⁃

tor F = [ ψ2 ψ3 ψ4 ψ6 ψ7 ψ8 ]
T
：

H (e)F = EF. (16)
The matrix H (e) is obtained by removing the conduc⁃tion band rows and columns from H and updating the pa⁃rameters L and N+  as follows：

L (E ) = L' + P2

E - Ec - acϵ
, (17)

N+ (E ) = N'+ + P2

E - Ec - acϵ
.

Eq.  （16） should be solved in each layer of the structure using plane waves.  The wavefunctions are then matched at the interfaces by applying the boundary condi⁃tions from Burt’s envelope function theory ［16］， which are derived by integrating Eq.  （16） across the interfac⁃es.  As a result， the vector functions F and BF must be continuous.  The 6 × 6 matrix B is given by：
B =  é

ë
êêêê ù

û
úúúúB3 0

0 B3
 (18)

where the 3 × 3 block B3   is defined as：
B3 =  

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úM ∂ ∂z 0 iN-kx

0 M ∂ ∂z iN-ky

iN+kx iN+ky L ∂ ∂z
. (19)

The solution of H (e)in each quantum well layer n is expressed as a superposition of transmitted and reflected plane waves with the same energy E and in-plane vector (kx， ky )：
F =  ei (kx x + ky y )∑

j = 1

6
{ }a (n )

j eik( )n
z,j ( z - zn1 )e (n )+ j + b (n )

j e-ik( )n
z,j ( z - zn2 )e (n )- j . (20)

Here， k (n )
z， j ( j = 1， ⋯， 6)   are the z-components of 

the complex wave vectors for the bulk states， with posi⁃tive or zero imaginary parts.  The coefficients a (n )
j   and b (n )

j   represent the transmitted and reflected wave amplitudes， respectively， and e (n )± j  are the eigenvectors satisfying：
H ( )e ( ± kz,j) e( )n± j = Ee (n )± j  (21)

where H ( )e ( ± kz，j ) matrices are derived from the matrix 
H (e) by substituting kz with ±kz，j where kz，j satisfy the equa⁃
tion | H ( )e (kz，j ) - EI | = 0， with I representing the identity 
matrix.Under the given boundary conditions， the coeffi⁃cients of two neighboring layers are connected using the transfer matrix.  The relationship is expressed as：

M (n + 1) = é
ë
êêêê

ù
û
úúúúD( )n -1 0

0 I
M̄ (n + 1) é

ë
êêêê ù

û
úúúúI 0

0 D(n + 1)  (22)
where I is the 3 × 3 identity matrix， and D(n ) is a 3 × 3 diagonal matrix with elements：

D( )n
ij = δij e

ik( )n
y,j ( yn - yn - 1). (23)

Since D(n ) is diagonal， its inverse is obtained by in⁃verting each diagonal element.  The matrix M̄ (n + 1) is nons⁃ingular and invertible， given by：
M̄ (n + 1) = é

ë

ê
êê
ê ù

û

ú
úú
úe( )n+ e( )n-

f ( )n+ f ( )n-

-1
é

ë

ê
êê
ê ù

û

ú
úú
úe( )n + 1+ e( )n + 1-

f ( )n + 1+ f ( )n + 1-
 (24)

where e (n )± = [e (n )±1  e (n )±2  e (n )±3 ] and f (n )± = [ f (n )±1  f (n )±2  f (n )±3 ].  Addi⁃
tionally：

f ( )n± j = Be (n )± j . (25)
The coefficients of outgoing waves (a(n )， b(m ) ) and in⁃

coming waves (a(m )， b(n ) ) are related through the scatter⁃
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ing matrix S (m. n )：
é
ë
êêêê ù

û
úúúúa(n )

b(m ) = S (m,n ) é
ë
êêêê ù

û
úúúúa(m )

b(n ) . (26)
Using the transfer matrix equation， a recursive for⁃mula for the submatrices of S (m，n ) is derived：

S11(1,n + 1) = [ I - M ( )n + 1 -1
11 S12(1,n) M ( )n + 121 ]-1

M ( )n + 1 -1
11 S11, 

(27)
S12(1,n + 1) = [ I -

M ( )n + 1 -1
11 S12(1,n) M ( )n + 121 ]-1

M ( )n + 1 -1
11 [ S12(1,n) M (n + 1)22 -

M (n + 1)12 ] ,
S21(1,n + 1) = S22(1,n) M ( )n + 121 S11(1,n + 1) + S21 (1,n ),

S22(1,n + 1) = S22(1,n) M ( )n + 121 S12(1,n + 1) +
S22(1,n) M ( )n + 122 .
The submatrices of M (n + 1) are obtained as：

M (n + 1)11 = [ M̄ ( )n + 1 -1
11 D( )n ]-1, (28)

M (n + 1)12 = D( )n -1
M̄ (n + 1)12 D(n + 1) ,

M (n + 1)21 = M̄ (n + 1)21 ,
M (n + 1)22 = M̄ (n + 1)22 D(n + 1).

By setting S (1，1) = I， the recursive relations allow 
constructing all scattering matrices S (1，n ) for n =2，3，⋯，N.  Similarly， setting S (m，m) = I， all S (m，n ) 
for n > m can be constructed.The coefficients of incoming waves a(1) and b(N ) are set to zero to determine the energy levels of states con⁃fined in the quantum well.  Using：

M (n + 1)11 = [ M̄ ( )n + 1 -1
11 D( )n ]-1, (29)

M (n + 1)12 = D( )n -1
M̄ (n + 1)12 D(n + 1) ,

M (n + 1)21 = M̄ (n + 1)21 ,
M (n + 1)22 = M̄ (n + 1)22 D(n + 1).

To determine the coefficients for nth layer of an N-

layer structure， we have：
é
ë
êêêê

ù
û
úúúú

a( )n

b( )1 = S (1,n) é
ë
êêêê

ù
û
úúúú

a( )1

b( )n
, (30)

é
ë
êêêê

ù
û
úúúú

a( )N

b( )n
= S (n,N ) é

ë
êêêê

ù
û
úúúú

a( )n

b( )N
.

The coefficients of incoming waves a(1) and b(N ) are set to zero to determine the energy levels of states con⁃fined in the superlattice period.  From these， the coeffi⁃cients a(n ) and b(n ) are determined as：
a(n ) = [ I - S12(1,n) S21 (n,N ) ]-1 × [ S11(1,n) a(1) +

S12(1,n) S22(n,N ) b(N ) ] , (31)
b(n ) = [ I - S21(n,N ) S12 (1,n ) ]-1 × [ S21(n,N ) S11 (1,n )a(1) +

S22(n,N ) b(N ) ] .
To describe the superlattice electronic structure and determine energy levels， periodic boundary conditions must be introduced.  For a superlattice， the coefficients of each layer within a period must match the coefficients of the corresponding layer in the next period.  For exam⁃ple：

é
ë
êêêê

ù
û
úúúú

a( )N

b( )1 = S (1,N ) é
ë
êêêê

ù
û
úúúú

a( )1

b( )N
, (32)

é
ë
êêêê

ù
û
úúúú

a( )1

b( )1 = é
ë
êêêê

ù
û
úúúú

a( )N

b( )N
.

As a result， the following equation must be solved to find the energy levels：
[ S (1,N ) - I ] é

ë
êêêê ù

û
úúúúa(N )

b(1) = 0, (33)
or equivalently：

| S (1,N ) - I | = 0, (1)
Once the energy levels of the system are deter⁃mined， the coefficients a(n ) and b(n ) for each layer can be calculated using the expressions derived above.

Fig.  1　（a） The atomic force microscopy image of a 10 × 10 μm2 surface area of one of the LWIR samples used in this study with rms 
roughness value of 1. 3 Å.  （b） High-resolution X-ray diffraction （HR-XRD） rocking curve and simulation for the same device.
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2 Comparison with experimental results 
Using the discussed scattering matrix-based meth⁃od， we calculated the electronic band-structure of LWIR InAs/GaSb superlattices.  The accuracy of the method was validated by comparing calculated cutoff wavelengths to experimental data， demonstrating the precision of this approach.The samples for this work were grown on n-type GaSb substrates using a solid source molecular beam epi⁃taxy （SSMBE） reactor equipped with group III SUMO® cells and group V valved crackers.  The quality of the ma⁃terial was assessed after epitaxial growth using atomic force microscopy （AFM） and high-resolution X-ray dif⁃fraction （HR-XRD）.  The samples exhibited good sur⁃face morphology， characterized by clear atomic steps and a small surface roughness of less than 1. 5 Å over a 10 ×10 μm2 area， indicating the absence of structural degra⁃

dation.  The satellite peaks in the HR-XRD scan showed the overall periods of the superlattices.  The lattice mis⁃match to the GaSb substrate for all samples was less than 2000 ppm （Figure 1）.  In Figure 2， we present examples of the photoluminescence （PL） and quantum efficiency 
（QE） spectra of a photodiode fabricated from one of the LWIR superlattices used in this study at 77 K.  The su⁃perlattice design consists of 13 and 7 monolayers （MLs） of InAs and GaSb， respectively， with InSb-like interface layers.The superlattice layer thicknesses for each sample were extracted from HR-XRD results using a method de⁃scribed in ［17］ and fed into model to make the electronic band-structure estimation as accurate as possible.  The deviations between calculated and measured wave⁃lengths， Δλ = λcutoff - λcalc， are plotted in Figure 3.  All samples exhibited deviations within 0. 4 μm， with the majority falling below 0. 2 μm， highlighting the reliabili⁃ty of this approach.

The thermal effects were also considered， as indicat⁃ed by red and green lines in Figure 3， which represent the error margin arising from a variation of ±kBT in the bandgap energy at 77 K.  Since InAs/GaSb superlattices are often employed as absorbers in infrared detectors op⁃erating at 77 K， it is significant that all points lie within these bonds.  This alignment underscores that wavelength deviations are predominantly below typical thermal broad⁃ening， further demonstrating the precision of our method.
3 Conclusions 

We have investigated the electronic band-structure modeling of InAs/GaSb type-II superlattices using a scat⁃tering matrix-based approach that incorporates boundary condition matching and interface dynamics.  The model's theoretical predictions show strong agreement with experi⁃mental results， demonstrating its accuracy in capturing the electronic properties of InAs/GaSb superlattices.  These results support the method's effectiveness in pro⁃viding a detailed understanding of the band structure and its potential utility in the analysis and design of superlat⁃tice structures.

Fig.  2　Quantum efficiency and normalized PL spectra at 77K for one of the LWIR samples used in this study.
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